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Background and aims: 

An increasing body of evidence indicates that fibroblasts are a heterogeneous population in both normal and disease states
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: the aim of this project was to characterise this variation, and to link the molecular phenotypes of any distinct subpopulations to their functions. 
Results: 

As there is no single marker that will reliably identify all fibroblasts, we assessed the suitability of previously-described fibroblast markers to identify lung fibroblasts. We found CD90 to be a highly sensitive and robust marker in comparison to PDGFR- (previously described as a marker for fibroblast isolation across multiple tissue types5).

The majority of solid tissue disaggregation protocols have focused on immune cell isolation
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. We compared different disaggregation durations and enzymatic cocktails, finding that extended Collagenase incubation times were required to release fibroblasts from tissue samples. Addition of TrypLE to the disaggregation protocol addressed generated a significantly higher fraction of epithelial cells, demonstrating that this protocol may be further refined or optimised to enrich for different cell types for future studies.

Droplet-barcoded (Drop-seq) single-cell RNA sequencing, a cost-effective method for profiling large numbers of cells, was used for transcriptomic profiling of ex vivo fibroblasts using Drop-seq. Comparison of data from lung cell lines and primary ex vivo cells indicated the need for quality control metrics tailored to sample type and sequencing platform.

We developed a standardised approach for the removal of low-quality events from scRNA-seq data; this improves clustering quality compared to the use of previously-described quality-control metrics
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; we therefore refined an existing disaggregation-induced gene signature to assess the impact this has on the Drop-seq data. Clustering quality was not further improved by application of the refined signature, although it appears that some immune cell types are differentially impacted by enzymatic disaggregation.

Applying this optimised processing pipeline to data from 12 tumour samples identified 33 distinct clusters. We used a stromal cell signature identified in this dataset to identify stromal cells in a NSCLC scRNA-seq dataset published during the course of this project13. Analysis of these combined stromal populations identified 9 distinct stromal clusters: 4 CAF, 3 NOF, 1 pericyte and 1 VSMC population.  Trajectory analysis of the stromal cell data indicated distinct differentiation pathways for the identified populations. Of the CAF populations, two (marked by POSTN and MMP1 expression) showed expression of genes and enrichment of gene sets suggestive of “fibrogenic” and “catabolic” phenotypes. Immunohistochemical validation using markers for the POSTN and MMP1 clusters confirmed that these populations show distinct spatial distributions.
A number of studies have demonstrated that mechanical changes to tissue culture substrates can impact fibroblast phenotypes
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; in our scRNA-seq data, in keeping with other observations in this area
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, culture of fibroblasts on a rigid substrate appears to generate an activated “myofibroblastic” phenotype. This has implications for both planning of future work and the interpretation of previous studies of fibroblast function. Using genes identified by both differential gene expression and trajectory analysis, we created a panel to allow assessment of in vitro fibroblast phenotypes by RT-PCR. This identified that manipulation of culture conditions recreated some of the ex vivo phenotypes.
Conclusions: 

Identification of potential therapeutic targets will also require further functional characterisation. Trajectory analysis using the scRNA-seq data has given some indications of potential differentiation pathways to recreate ex vivo fibroblast phenotypes in vitro: these driver mechanisms may also represent therapeutic targets. However, the lack of significant GSEA results for trajectories makes determination of the precise drivers of each phenotype difficult: using alternative approaches to gene set enrichment, differential gene expression and trajectory analysis
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 may provide further information. 

How Closely Have the Original Aims been Met:
We have developed an optimised pipeline for the isolation and analysis of fibroblasts from primary tissues; this have been made available to other researchers. We have applied this approach to samples of both tumour and normal lung. Combining the resulting data with an existing NSCLC dataset, we have identified multiple stromal cell populations which appear to have distinct functions. Further characterisation will require optimisation of in vitro culture conditions.
Outputs:
Oral presentations
Single-cell analysis of cancer-associated fibroblast heterogeneity in non-small cell lung cancer: Mapping molecular phenotypes in tumours. Waise, S., Hanley, C.J., Parker, R., Ottensmeier, C.H., Rose-Zerilli, M.J. & Thomas, G.J. Maastricht Pathology 2018, Maastricht, June 2018

Characterising heterogeneity in the cancer-associated fibroblast population in non-small cell lung cancer: relating phenotype to function. Waise, S., Hanley, C.J., Parker, R. Rose-Zerilli, M.J. & Thomas, G.J. Crick Cancer Research Symposium, London, October 2018

Original papers
An optimized method to isolate human fibroblasts from tissue for single-cell RNA sequencing and analysis. Waise, S., Parker, R., Rose-Zerilli, M.J.J., Layfield, D.M., Wood, O., West, J., Ottensmeier, C.H., Thomas, G.J.* & Hanley, C.J.* (2019). Bio-protocols, Protocol ID: 1902817 (Invited submission; out for review)

An optimised tissue disaggregation and data processing pipeline for characterising fibroblast phenotypes using single-cell RNA sequencing. Waise, S., Parker, R., Rose-Zerilli, M.J.J., Layfield, D.M., Wood, O., West, J., Ottensmeier, C.H., Thomas, G.J.* & Hanley, C.J.* (2019). Scientific Reports 9 9580
Meeting abstracts
Single-cell analysis of cancer-associated fibroblast heterogeneity in non-small cell lung cancer: mapping molecular phenotypes in tumours. Waise, S., Hanley, C.J., Parker, R., Rose-Zerilli, M.J., Ottensmeier, C.H. & Thomas, G.J. (2019) Cancer Research 79 (13 Supplement) 3762

Single-cell analysis of cancer-associated fibroblast heterogeneity in non-small cell lung cancer: mapping molecular phenotypes in tumours. Waise, S., Hanley, C.J., Parker, R., Ottensmeier, C.H., Rose-Zerilli, M.J. & Thomas, G.J. (2018) The Journal of Pathology 246 Suppl. S1 S13
References
1.
Desmoulière A, et al. Int J Dev Biol. 2004,48;509-517.

2.
Kalluri R. Nat Rev Cancer. 2016,16;582-598.

3.
Servais C, et al. The Journal of pathology. 2013,229;198-207.

4.
Anderberg C, et al. Cell Cycle. 2009,8;1461-1465.

5.
Sharon Y, et al. Journal of visualized experiments : JoVE. 2013,e4425.

6.
Quatromoni JG, et al. Journal of Leukocyte Biology. 2015,97;201-209.

7.
Ganesan A-P, et al. Nature Immunology. 2017,18;940.

8.
Holt PG, et al. Clinical and experimental immunology. 1986,66;188-200.

9.
Grange C, et al. J Immunol Methods. 2011,372;119-126.

10.
Perrot I, et al. Journal of immunology (Baltimore, Md : 1950). 2007,178;2763-2769.

11.
Puram SV, et al. Cell. 2017,171;1611-1624.

12.
Tirosh I, et al. Science. 2016,352;189-196.

13.
Lambrechts D, et al. Nature Medicine. 2018,28;1277-1289.

14.
Lun ATL, et al. Genome biology. 2019,20;63-63.

15.
Campbell J, et al. celda: CEllular Latent Dirichlet Allocation. R package version 1.0.2. 2019
16.
Hinz B. European Journal of Cell Biology. 2006,85;175-181.

17.
Achterberg VF, et al. Journal of Investigative Dermatology. 2014,134;1862-1872.

18.
Kessler D, et al. Journal of Biological Chemistry. 2001,276;36575-36585.

19.
Balestrini JL, et al. Integrative Biology. 2012,4;410-421.

20.
Avery D, et al. Matrix Biology. 2018,67;90-106.

21.
Arora PD, et al. The American Journal of Pathology. 1999,154;871-882.

22.
Hinz B, et al. Molecular Biology of the Cell. 2003,14;2508-2519.

23.
Huang da W, et al. Nat Protoc. 2009,4;44-57.

24.
Wang T, et al. BMC Bioinformatics. 2019,20;40.

25.
Saelens W, et al. Nature biotechnology. 2019,37;547-554.



RR T 2019v1

